By the interchangeability of partial derivatives,
\[\frac{\partial}{\partial v} \left(\frac{\partial u}{\partial s} \right) = \frac{\partial}{\partial s} \left(\frac{\partial u}{\partial v} \right) \]

The thermodynamic identity for \(U \) (eqn 5.16) says
\[dU = T \, ds - P \, dV + \mu \, dN \]

So if \(V, N \) are held fixed, \(\left(\frac{\partial u}{\partial s} \right)_{V,N} = T \)

And if \(S, N \) are held fixed, \(\left(\frac{\partial u}{\partial v} \right)_{S,N} = -P \)

Plugging these into the partial derivative formula, we have
\[\frac{\partial}{\partial v} (T)_{S} = \frac{\partial}{\partial s} (-P)_{V} \]

\[\Rightarrow \left(\frac{\partial T}{\partial v} \right)_{S} = -\left(\frac{\partial P}{\partial s} \right)_{V} \]

Now we are supposed to do something similar for the other "energies". So what was special about the starting point? Well by the thermodynamic identity for \(U \), we are urged to consider \(U(S,V,N) \). Taking \(N \) out of the picture, we see the cross densities are those of the remaining variables.

So let's move on to enthalpy:
\[H (S, P, N) = \text{try} \]

\[\frac{\partial}{\partial S} \left(\frac{\partial H}{\partial P} \right) = \frac{\partial}{\partial P} \left(\frac{\partial H}{\partial S} \right) \]

From the thermodynamic identity for \(H \) (Eq. 5.18), we see:

\[(\frac{\partial H}{\partial P}) = V, \quad (\frac{\partial H}{\partial S}) = T. \]

Thus, \((\frac{\partial V}{\partial S})_P = (\frac{\partial T}{\partial P})_S \) in the resulting Maxwell relation.

Now for the Helmholtz free energy \(F (T, V, N) \)

\[\frac{\partial}{\partial T} \left(\frac{\partial F}{\partial V} \right) = \frac{\partial}{\partial V} \left(\frac{\partial F}{\partial T} \right) \]

By the thermodynamic identity for \(F \), we see

\[\frac{\partial F}{\partial V} = -P, \quad \frac{\partial F}{\partial T} = -S \]

\[\Rightarrow \quad (\frac{\partial P}{\partial T})_V = (\frac{\partial S}{\partial V})_T \]

Finally, the Gibbs free energy \(G (T, P, N) \)

\[\frac{\partial}{\partial T} \left(\frac{\partial G}{\partial P} \right) = \frac{\partial}{\partial P} \left(\frac{\partial G}{\partial T} \right) \]

but \((\frac{\partial G}{\partial P}) = V, \quad (\frac{\partial G}{\partial T}) = -S \)
$$S_0 \left(\frac{\partial v}{\partial T} \right)_p = -\left(\frac{\partial S}{\partial p} \right)_T$$