5.29 a) From table on page 404.

<table>
<thead>
<tr>
<th></th>
<th>$\Delta G \text{ (kJ)}$</th>
<th>$V \text{ (cm}^3\text{)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>kyanite</td>
<td>-2.443.88</td>
<td>44.09</td>
</tr>
<tr>
<td>andalusite</td>
<td>-2.442.66</td>
<td>51.53</td>
</tr>
<tr>
<td>sillimanite</td>
<td>-2.440.99</td>
<td>49.90</td>
</tr>
</tbody>
</table>

Since kyanite has smallest ΔG it is certainly the stable phase at atmospheric pressure. We can see this conclusion is true at any pressure (at room temperature) by seeing that from eqn 5.41 $(\partial G/\partial P)_T^N = V$ and that kyanite has the lowest $V \Rightarrow$ its G will increase the slowest with increasing pressure. Hence it will remain the lowest G.

b) By the rules of calculus

$$dG = \left(\frac{\partial G}{\partial T}\right)_{P,N} dT + \left(\frac{\partial G}{\partial P}\right)_{T,N} dP$$

If the pressure remains fixed, then $dP = 0$.

$$\Rightarrow dG = \left(\frac{\partial G}{\partial T}\right)_{P,N} dT$$

From equation 5.42, we have $\left(\frac{\partial G}{\partial T}\right)_{P,N} = -5$.
\[dG = -SdT \quad \text{at constant } P. \]

Integrating \(w.r.t. \) temperature,

\[G(T_2) - G(T_1) = -\int_{T_1}^{T_2} S \, dT \]

This relation will be true for each phase. So if we substitute two such relations for each other, we will have:

\[\Delta G(T_2) - \Delta G(T_1) = -\int_{T_1}^{T_2} \Delta S \, dT \]

which is what we were to show.

Schroeder then argues that \(\Delta S \) is independent of \(T \), at least at "high" temperatures. So this would simplify the relationship above to:

\[\Delta G(T_2) - \Delta G(T_1) = -\Delta S \, \Delta T \]

\[= -\Delta S \left(T_2 - T_1 \right) \]

<table>
<thead>
<tr>
<th>\text{Mineral}</th>
<th>\Delta G \text{ (kJ)}</th>
<th>S \text{ (J/k)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>kyanite</td>
<td>-2443.88</td>
<td>83.81</td>
</tr>
<tr>
<td>andalusite</td>
<td>-2942.66</td>
<td>93.22</td>
</tr>
<tr>
<td>sillimanite</td>
<td>-2440.99</td>
<td>96.11</td>
</tr>
</tbody>
</table>
First consider stability of andalusite with respect to kyanite

\[\Delta G(T_2) - \Delta G(T_1) = -\Delta S (T_2 - T_1) \]

\[\begin{align*}
\downarrow & \\
0 - \left(-2443.88 + 2442.66 \right) \text{kJ} &= - \left(83.81 - 93.22 \right) \frac{\text{kJ}}{\text{K}} \\
\uparrow & \\
x (T_2 - T_1)
\end{align*} \]

When equally stable at room temperature

\[1.220 \times 10^3 \text{ J} = 9.41 \frac{\text{J}}{\text{K}} (T_2 - T_1) \]

\[\Rightarrow (T_2 - T_1) = 130 \text{ K} \]

\[\Rightarrow \text{andalusite becomes stable w.r.t. kyanite above} \]

25 + 130 \approx 155 \text{ °C.}

Repeat exercise with sillimanite and kyanite

\[0 - \left(-2443.88 + 2440.99 \right) \text{kJ} = - \left(83.81 - 96.11 \right) (T_2 - T_1) \]

\[T_2 - T_1 = 235 \text{ K} \Rightarrow \text{sillimanite becomes stable w.r.t. kyanite above} \]

\[T_2 = 260 \text{ °C.} \]

But, of course, by then andalusite has been established as favored phase over kyanite. So repeat with sillimanite and...
andalusite

\[\Delta G = (2442.66 + 2440.99) \text{kJ} = -(93.22 - 96.11) \frac{\text{J}}{\text{K}} \frac{(T_2 - T_1)}{10} \]

\[(T_2 - T_1) = 578 \text{ K} \Rightarrow T_2 = 603 \text{ °C}. \]

So, based on this calculation, we expect kyanite to be the stable phase from room temperature up to 158 °C, when andalusite takes over. Then above 603 °C, sillimanite becomes the most stable phase.

d) At constant pressure, the change in entropy (of a given phase) is given by

\[\Delta S = C_p \frac{\Delta T}{T} \]

So the approximation that \(\Delta S \) between phases is a constant implies that the heat capacity of the two phases is the same. We see from the table that this isn't exactly true at room temperature

<table>
<thead>
<tr>
<th>Phase</th>
<th>(C_p) (J/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kyanite</td>
<td>121.71</td>
</tr>
<tr>
<td>andalusite</td>
<td>122.72</td>
</tr>
<tr>
<td>sillimanite</td>
<td>129.52</td>
</tr>
</tbody>
</table>

Let's look at the worst case scenario, andalusite vs. sillimanite over a \(\Delta T \) of 578 K.
\[\Delta (\Delta S) = \Delta C_p \cdot \Delta T / T \]

\[= (124.52 - 122.72) \text{ J/K} \cdot 578 \text{ K} / 589 \text{ K} \]

\[= 1.8 \text{ J/K} \]

So significant correction possible. Need more data.