5.22 The chemical potential of an ideal gas was worked out in Eqn 3.63 (pp 118) and found to be:

\[\mu = -kT \ln \left(\frac{V}{N} \left(\frac{2\pi m kT}{\hbar^2} \right)^{3/2} \right) \]

\[= -kT \ln \left(\frac{2\pi m kT}{\hbar^2} \right)^{3/2} - kT \ln \left(\frac{V}{N} \right) \]

but \(\frac{V}{N} = \frac{kT}{P} \) for an ideal gas.

So,

\[\mu = -kT \ln \left(\frac{2\pi m kT}{\hbar^2} \right)^{3/2} - kT \ln \left(\frac{kT}{P} \right) \]

Now \(\mu^0 \), in the same with \(P \) replaced by \(P^0 \)

\[\Rightarrow \mu - \mu^0 = -kT \ln \left(\frac{2\pi m kT}{\hbar^2} \right)^{3/2} - kT \ln \left(\frac{kT}{P} \right) \]

\[+ kT \ln \left(\frac{2\pi m kT}{\hbar^2} \right)^{3/2} + kT \ln \left(\frac{kT}{P^0} \right) \]

\[= kT \ln \left(\frac{P}{P^0} \right) \]

\[\Rightarrow \mu = \mu^0 + kT \ln \left(\frac{P}{P^0} \right) \]