3.36 a) If \(N \) and \(q \) are both much greater than 1, then we can use the results we obtained in problem 3.25.

\[
S = k(q+N)\ln(q+N) - kq\ln q - Nk\ln N
\]

\[
\left(\frac{\partial S}{\partial N} \right)_{u,v} = k\left(\frac{q+N}{q+N} \right) + \frac{k \ln (q+N)}{N} - \frac{k \ln N}{N}
\]

\[
\left(\frac{\partial S}{\partial N} \right)_{u,v} = k \ln \left(\frac{q+N}{N} \right)
\]

\[
\Rightarrow \mu = -T \left(\frac{\partial S}{\partial N} \right)_{u,v} = -kT \ln \left(\frac{N+q}{N} \right)
\]

b) In limit \(N \gg q \), (low \(T \) limit)

\[
\mu = -kT \ln \left(1 + \frac{q}{N} \right) \approx -kT \left(\frac{q}{N} \right)
\]

In limit \(N \ll q \), 1 + \(q/N \approx q/N \)

\[
\Rightarrow \mu = -kT \ln \left(\frac{q}{N} \right)
\]

Since \(\Delta S = \mu \Delta N \), entropy doesn't change much when you add a particle in low \(T \) limit (since \(q/N \) is small). But entropy changes a lot when you add a particle in high \(T \) limit. (Since \(\ln \left(q/N \right) \) is large change when \(N \)).