Due: Friday, 10/24, 2:10pm, PHYS360 Assignment 8v2

Reading 1. Griffiths, Ch.3, pg. 114-124. Prepare for Reading Quiz: Friday 10/24, questions on anything in Griffiths, pages 114-124, but especially:

a) understand Dirac notation, 118-120
b) be able to represent operators by the matrix elements, pg 120
c) understand Example 3.8, pg 120 on the two-state system
 bra \(|\psi_1\rangle \) ket
 dual space
 projection operator
d) be able to define:
ed) understand the “tidiest” way to express completeness, pg 123

1. In some orthonormal basis an operator \(\hat{T} = |\phi_1\rangle\langle\phi_1| + 2|\phi_1\rangle\langle\phi_2| + |\phi_2\rangle\langle\phi_1| \). Find the matrix, representing \(\hat{T} \).

2. An important operator used in quantum computation is the “Hadamard gate,” which is represented by the matrix:
 \[
 H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
 \]

 Show whether \(H \) is Hermitian and unitary. (Recall that for a unitary matrix \(U \), \(UU^\dagger = 1 \), or equivalently \(U^\dagger = U^{-1} \))

3. Suppose that in some orthonormal basis \(|u_1\rangle, |u_2\rangle, |u_3\rangle \) an operator \(\hat{A} \) acts as follows:
 \[
 \hat{A}|u_1\rangle = 2|u_1\rangle \\
 \hat{A}|u_2\rangle = 3|u_1\rangle - i|u_3\rangle \\
 \hat{A}|u_3\rangle = -|u_2\rangle
 \]

 Write the matrix representation of the operator.

4. Is the following set of vectors linearly independent?
 \[
 |a\rangle = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} , |b\rangle = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix} , |c\rangle = \begin{pmatrix} 0 \\ 0 \\ -4 \end{pmatrix}
 \]

 Hint: Recall that for linearly independent vectors, the equation:
 \[
 a_1|a\rangle + a_2|b\rangle + a_3|c\rangle = 0
 \]

 can only be true if \(a_1 = a_2 = a_3 = 0 \).
An orthonormal basis of a Hamiltonian operator in four dimensions is defined as follows

\[H|1\rangle = E|1\rangle, H|2\rangle = 2E|2\rangle, H|3\rangle = 3E|3\rangle, H|4\rangle = 4E|4\rangle \]

A system is in the state

\[|\psi\rangle = 3|1\rangle + 2|2\rangle - |3\rangle + 7|4\rangle \]

a) If a measurement of the energy is made, what results can be found and with what probabilities? (Check normalization)
b) Find the average energy of the system.

On a side (refer to the book’s appendix for full treatment): A vector is specified with respect to a a certain basis \(|e_n\rangle \), with components \(a^e_i \). In another basis \(|f_n\rangle \), the same vector will have different components, say \(a^f_i \). These components transform as

\[a^f_i = \sum_{j=1}^{n} S_{ij} a^e_j \]

where \(S_{ij} \) are the components of the matrix \(S \) that transforms \(|f_n\rangle \) into \(|e_n\rangle \).

Now suppose there is a matrix \(T^e \) that transforms any vector specified in the \(|e_n\rangle \) basis to a different vector (that has also components specified in the same basis.)

Question: What are the components of the matrix in the \(|f_n\rangle \) basis \(T^f \) that does the same transformation?

Answer: \(T^f = S T^e S^{-1} \)

Example:

The kets \(|\psi_1\rangle \) and \(|\psi_2\rangle \) form an orthonormal basis. We define a new basis \(|\phi_1\rangle \) and \(|\phi_2\rangle \) by

\[|\phi_1\rangle = \frac{1}{\sqrt{2}} (|\psi_1\rangle + |\psi_2\rangle) \]
\[|\phi_2\rangle = \frac{1}{\sqrt{2}} (|\psi_1\rangle - |\psi_2\rangle) \]

a) Calculate the elements of the matrix \(S_{ij} \) that transforms the basis.
b) Find \(S^{-1} \)
c) An operator \(\hat{P} \) is represented in the \(|\psi_i\rangle \)-basis by the matrix \(P = \begin{pmatrix} 1 & \epsilon \\ \epsilon & 1 \end{pmatrix} \).

What are the components of \(P \) in the \(|\phi_i\rangle \) basis? (While there are several ways of doing this problems, you must use \(T^f = S T^e S^{-1} \))

Question: Is there a way to transform any matrix \(T^e \) (the superscript \(e \) indicates the components are with respect to \(|e_n\rangle \) basis) to a basis in which the matrix \(T^f \) in the new basis is diagonal (with only diagonal elements nonzero)? In other words, can we find \(S \) (the matrix that transforms the basis) such that \(T^f = S T^e S^{-1} \), where \(T^f \) is diagonal? The answer is yes; follow this procedure (you are finding a similarity transformation for a matrix \(T^e \)).
1. Find the eigenvalues and eigenvectors of the matrix T^e
2. Normalize the eigenvectors of T^e
3. Form a new matrix S by forming the columns of S with the eigenvectors of T^e

In quantum mechanics, we are concerned primarily with Hermitian and Unitary matrices. In that case, the diagonal transformation of a hermitian matrix H takes the form:

$$T^f = U^\dagger HU$$

This holds because $U^\dagger = U^{-1}$ for a unitary matrix. Such a transformation is called a unitary transformation.

Example:

7. Consider the matrix $R = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, the 2×2 rotation matrix.

Find a unitary transformation that diagonalizes R (Hint: a) Find the eigenvalues and eigenvectors of R b) normalize the eigenvectors. c) Construct the matrix U by having the two eigenvectors of R as columns of U. d) Write down U^\dagger. e) Check that $UU^\dagger = I$. f) Finally, calculate $U^\dagger RU$. Is the final matrix diagonal?